Hazard Mitigation Measures against Storm Surge: Case Jamaica

Jamel D. Banton Director Smith Warner International Ltd.

Components of Storm Surge

Influenced by:

- Reefs
- Continental Shelf
- Nearshore Steepness
- Beach slope
- Speed of Hurricane
- Global Sea Level Rise

Hurricane Activity in the Caribbean

Hurricane Activity in the Caribbean

Hurricane Activity in the Caribbean

Hurricane Activity in Jamaica

1912, Charlie
(1950), Allen
(1980), Gilbert
(1988), Ivan
(2004), Dean
(2007) and
Tropical Storm
Gustav (2008).

Storm Surge Damage

- Estimated damages from Storm Surge by Ivan (2004)
 - Housing J\$123M
 - Tourism J\$33M
 - Fishing J\$13.2M
- Estimated damages from Storm Surge by Dean (2007)
 - Bauxite Ports US\$26M
 - No data available for other sectors

Location	Max Storm Surge from Dean (2007)	Run-up Dist
Fort Augustus Prison	2.5-3.om	90-100m
Port Henderson Beach	3m	8om
Hellshire Beach	3m	383m
Old Harbour Bay	3.5m	573m

Source: Ted Robinson and Shakira Khan

The Future? Trends and Forecasts

Multi-Decadal Pattern and Trend of Hurricane Activity

Multi-Decadal Pattern and Increasing trend of Hurricane Activity

Climate Change **Predictions**

Case	Sea Level Rise up to 2090 relative to 1999		
B ₁ scenario	0.18 – 0.38		
AıT scenario	0.20 - 0.45		
B2 scenario	0.20 - 0.43		
A ₁ B scenario	0.21 – 0.48		
A2 scenario	0.23 - 0.51	100	-
AıFI scenario	0.26 – 0.59	30.00	
Ranges for the Caribbean		00	

80

60

0

-20

1900

Sea Level Change (cm) 40 20

1950

Model-based range excluding future rapid dynamical changes in ice flow.

Mitigation: Design and Construction

- 50-year Condition no longer appears valid for critical structures if DRM and CCA are to be mainstreamed into the planning process
- Use 150-year event for design of critical facilities and for disaster planning
- Setback limits need to evaluated based on specific site characteristics rather than standardized without scientific backup (e.g. 100ft)
- Geologic surveys need to be used to infer hurricane impacts greater than 100 years old
- Local Building Standards for Design and Construction of Structures in the Coastal Zone need to be established

Mitigation: Coastal Enhancement

Paradigm shift in the approach to coastal protection
 Coastal Defense
 Coastal Enhancement

• Encourage beach growth in front of coastal defense structures as this should be the first line of defense against storms and rising sea level

Mitigation:

Facilitate "Natural" Rebuilding

- We cannot leave the environment to heal on its own
- Damages in some instances are irreversible within a generational lifetime
- We must seek to help nature to heal itself through:
 - Reef regeneration initiatives
 - Artificial reefs
 - Replanting of seagrass
 - Enhancement and protection of mangroves and wetlands
 - Sound Coastal Zone
 Management Planning

Mitigation:

Coastline as an Important Asset

- Revised legislation to allow government to take "ownership" of coastline
- Fund suite of Baseline Studies to define shoreline/sea interactions
- Fund inventory, maintenance and development programs
- Identification and monitoring of all critical shorelines
- Increased coastal zone management planning activities

Climate Change Adaptation Strategies

Existing Thinking

- Protect and Enhance coastline to safeguard economic infrastructure
- Increase public awareness to enhance the protection of coastal and marine ecosystems through: conservation; fishing limits, careful construction, etc.
- Construct sea defences and beach reinforcement
- Protect and conserve coral reefs, mangroves, sea grass and littoral vegetation

Anticipatory Approach

- Implement Integrated Coastal Zone Management Plans
- Improve coastal planning and zoning through the CZMP process
- Improve legislation for coastal protection and to support CZMP (make it LAW!)
- Research and monitor coastal/marine processes, shoreline behaviour and coastal ecosystems
- Build institutional capacity to facilitate the integration of climate change adaptation into development planning

Immediate Work Needs

- Upgraded storm surge and multihazard mapping for Kingston, Montego Bay and all other coastal towns
- Hazard, Vulnerability and Risk studies for all coastal towns
- Integrated Coastal Zone Management Plans for all coastal towns

Funding Opportunities

- Follow the "Barbados" model They have accessed IADB funding to carry out CZM Planning for the entire island shoreline since 1991 up to the present time
- Initial thinking focused on understanding of the interactions of man-induced activities on the coastal zone, and preserving the coastline, through a recognition of the importance of the tourism sector
- Present paradigm now focuses on Disaster Risk
 Management and Climate Change Adaptation, for which a lot of funding is now available